3.3.21 \(\int \tanh (x) (a+b \tanh ^2(x))^{3/2} \, dx\) [221]

Optimal. Leaf size=63 \[ (a+b)^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a+b \tanh ^2(x)}}{\sqrt {a+b}}\right )-(a+b) \sqrt {a+b \tanh ^2(x)}-\frac {1}{3} \left (a+b \tanh ^2(x)\right )^{3/2} \]

[Out]

(a+b)^(3/2)*arctanh((a+b*tanh(x)^2)^(1/2)/(a+b)^(1/2))-(a+b)*(a+b*tanh(x)^2)^(1/2)-1/3*(a+b*tanh(x)^2)^(3/2)

________________________________________________________________________________________

Rubi [A]
time = 0.07, antiderivative size = 63, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {3751, 455, 52, 65, 214} \begin {gather*} -(a+b) \sqrt {a+b \tanh ^2(x)}-\frac {1}{3} \left (a+b \tanh ^2(x)\right )^{3/2}+(a+b)^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a+b \tanh ^2(x)}}{\sqrt {a+b}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Tanh[x]*(a + b*Tanh[x]^2)^(3/2),x]

[Out]

(a + b)^(3/2)*ArcTanh[Sqrt[a + b*Tanh[x]^2]/Sqrt[a + b]] - (a + b)*Sqrt[a + b*Tanh[x]^2] - (a + b*Tanh[x]^2)^(
3/2)/3

Rule 52

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + n + 1))), x] + Dist[n*((b*c - a*d)/(b*(m + n + 1))), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 455

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[m
- n + 1, 0]

Rule 3751

Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
 :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[c*(ff/f), Subst[Int[(d*ff*(x/c))^m*((a + b*(ff*x)^n)^p/(c^2
 + ff^2*x^2)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ
[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))

Rubi steps

\begin {align*} \int \tanh (x) \left (a+b \tanh ^2(x)\right )^{3/2} \, dx &=\text {Subst}\left (\int \frac {x \left (a+b x^2\right )^{3/2}}{1-x^2} \, dx,x,\tanh (x)\right )\\ &=\frac {1}{2} \text {Subst}\left (\int \frac {(a+b x)^{3/2}}{1-x} \, dx,x,\tanh ^2(x)\right )\\ &=-\frac {1}{3} \left (a+b \tanh ^2(x)\right )^{3/2}+\frac {1}{2} (a+b) \text {Subst}\left (\int \frac {\sqrt {a+b x}}{1-x} \, dx,x,\tanh ^2(x)\right )\\ &=-(a+b) \sqrt {a+b \tanh ^2(x)}-\frac {1}{3} \left (a+b \tanh ^2(x)\right )^{3/2}+\frac {1}{2} (a+b)^2 \text {Subst}\left (\int \frac {1}{(1-x) \sqrt {a+b x}} \, dx,x,\tanh ^2(x)\right )\\ &=-(a+b) \sqrt {a+b \tanh ^2(x)}-\frac {1}{3} \left (a+b \tanh ^2(x)\right )^{3/2}+\frac {(a+b)^2 \text {Subst}\left (\int \frac {1}{1+\frac {a}{b}-\frac {x^2}{b}} \, dx,x,\sqrt {a+b \tanh ^2(x)}\right )}{b}\\ &=(a+b)^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a+b \tanh ^2(x)}}{\sqrt {a+b}}\right )-(a+b) \sqrt {a+b \tanh ^2(x)}-\frac {1}{3} \left (a+b \tanh ^2(x)\right )^{3/2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.11, size = 59, normalized size = 0.94 \begin {gather*} (a+b)^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a+b \tanh ^2(x)}}{\sqrt {a+b}}\right )-\frac {1}{3} \sqrt {a+b \tanh ^2(x)} \left (4 a+3 b+b \tanh ^2(x)\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Tanh[x]*(a + b*Tanh[x]^2)^(3/2),x]

[Out]

(a + b)^(3/2)*ArcTanh[Sqrt[a + b*Tanh[x]^2]/Sqrt[a + b]] - (Sqrt[a + b*Tanh[x]^2]*(4*a + 3*b + b*Tanh[x]^2))/3

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(472\) vs. \(2(51)=102\).
time = 0.52, size = 473, normalized size = 7.51

method result size
derivativedivides \(-\frac {\left (b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b \right )^{\frac {3}{2}}}{6}-\frac {b \left (\frac {\left (2 b \left (\tanh \left (x \right )-1\right )+2 b \right ) \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}{4 b}+\frac {\left (4 b \left (a +b \right )-4 b^{2}\right ) \ln \left (\frac {b \left (\tanh \left (x \right )-1\right )+b}{\sqrt {b}}+\sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}\right )}{8 b^{\frac {3}{2}}}\right )}{2}-\frac {\left (a +b \right ) \left (\sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}+\sqrt {b}\, \ln \left (\frac {b \left (\tanh \left (x \right )-1\right )+b}{\sqrt {b}}+\sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}\right )-\sqrt {a +b}\, \ln \left (\frac {2 a +2 b +2 b \left (\tanh \left (x \right )-1\right )+2 \sqrt {a +b}\, \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}{\tanh \left (x \right )-1}\right )\right )}{2}-\frac {\left (b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b \right )^{\frac {3}{2}}}{6}+\frac {b \left (\frac {\left (2 b \left (1+\tanh \left (x \right )\right )-2 b \right ) \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}{4 b}+\frac {\left (4 b \left (a +b \right )-4 b^{2}\right ) \ln \left (\frac {b \left (1+\tanh \left (x \right )\right )-b}{\sqrt {b}}+\sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}\right )}{8 b^{\frac {3}{2}}}\right )}{2}-\frac {\left (a +b \right ) \left (\sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}-\sqrt {b}\, \ln \left (\frac {b \left (1+\tanh \left (x \right )\right )-b}{\sqrt {b}}+\sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}\right )-\sqrt {a +b}\, \ln \left (\frac {2 a +2 b -2 b \left (1+\tanh \left (x \right )\right )+2 \sqrt {a +b}\, \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}{1+\tanh \left (x \right )}\right )\right )}{2}\) \(473\)
default \(-\frac {\left (b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b \right )^{\frac {3}{2}}}{6}-\frac {b \left (\frac {\left (2 b \left (\tanh \left (x \right )-1\right )+2 b \right ) \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}{4 b}+\frac {\left (4 b \left (a +b \right )-4 b^{2}\right ) \ln \left (\frac {b \left (\tanh \left (x \right )-1\right )+b}{\sqrt {b}}+\sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}\right )}{8 b^{\frac {3}{2}}}\right )}{2}-\frac {\left (a +b \right ) \left (\sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}+\sqrt {b}\, \ln \left (\frac {b \left (\tanh \left (x \right )-1\right )+b}{\sqrt {b}}+\sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}\right )-\sqrt {a +b}\, \ln \left (\frac {2 a +2 b +2 b \left (\tanh \left (x \right )-1\right )+2 \sqrt {a +b}\, \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}{\tanh \left (x \right )-1}\right )\right )}{2}-\frac {\left (b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b \right )^{\frac {3}{2}}}{6}+\frac {b \left (\frac {\left (2 b \left (1+\tanh \left (x \right )\right )-2 b \right ) \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}{4 b}+\frac {\left (4 b \left (a +b \right )-4 b^{2}\right ) \ln \left (\frac {b \left (1+\tanh \left (x \right )\right )-b}{\sqrt {b}}+\sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}\right )}{8 b^{\frac {3}{2}}}\right )}{2}-\frac {\left (a +b \right ) \left (\sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}-\sqrt {b}\, \ln \left (\frac {b \left (1+\tanh \left (x \right )\right )-b}{\sqrt {b}}+\sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}\right )-\sqrt {a +b}\, \ln \left (\frac {2 a +2 b -2 b \left (1+\tanh \left (x \right )\right )+2 \sqrt {a +b}\, \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}{1+\tanh \left (x \right )}\right )\right )}{2}\) \(473\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tanh(x)*(a+b*tanh(x)^2)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/6*(b*(tanh(x)-1)^2+2*b*(tanh(x)-1)+a+b)^(3/2)-1/2*b*(1/4*(2*b*(tanh(x)-1)+2*b)/b*(b*(tanh(x)-1)^2+2*b*(tanh
(x)-1)+a+b)^(1/2)+1/8*(4*b*(a+b)-4*b^2)/b^(3/2)*ln((b*(tanh(x)-1)+b)/b^(1/2)+(b*(tanh(x)-1)^2+2*b*(tanh(x)-1)+
a+b)^(1/2)))-1/2*(a+b)*((b*(tanh(x)-1)^2+2*b*(tanh(x)-1)+a+b)^(1/2)+b^(1/2)*ln((b*(tanh(x)-1)+b)/b^(1/2)+(b*(t
anh(x)-1)^2+2*b*(tanh(x)-1)+a+b)^(1/2))-(a+b)^(1/2)*ln((2*a+2*b+2*b*(tanh(x)-1)+2*(a+b)^(1/2)*(b*(tanh(x)-1)^2
+2*b*(tanh(x)-1)+a+b)^(1/2))/(tanh(x)-1)))-1/6*(b*(1+tanh(x))^2-2*b*(1+tanh(x))+a+b)^(3/2)+1/2*b*(1/4*(2*b*(1+
tanh(x))-2*b)/b*(b*(1+tanh(x))^2-2*b*(1+tanh(x))+a+b)^(1/2)+1/8*(4*b*(a+b)-4*b^2)/b^(3/2)*ln((b*(1+tanh(x))-b)
/b^(1/2)+(b*(1+tanh(x))^2-2*b*(1+tanh(x))+a+b)^(1/2)))-1/2*(a+b)*((b*(1+tanh(x))^2-2*b*(1+tanh(x))+a+b)^(1/2)-
b^(1/2)*ln((b*(1+tanh(x))-b)/b^(1/2)+(b*(1+tanh(x))^2-2*b*(1+tanh(x))+a+b)^(1/2))-(a+b)^(1/2)*ln((2*a+2*b-2*b*
(1+tanh(x))+2*(a+b)^(1/2)*(b*(1+tanh(x))^2-2*b*(1+tanh(x))+a+b)^(1/2))/(1+tanh(x))))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)*(a+b*tanh(x)^2)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*tanh(x)^2 + a)^(3/2)*tanh(x), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 910 vs. \(2 (51) = 102\).
time = 0.45, size = 2385, normalized size = 37.86 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)*(a+b*tanh(x)^2)^(3/2),x, algorithm="fricas")

[Out]

[1/12*(3*((a + b)*cosh(x)^6 + 6*(a + b)*cosh(x)*sinh(x)^5 + (a + b)*sinh(x)^6 + 3*(a + b)*cosh(x)^4 + 3*(5*(a
+ b)*cosh(x)^2 + a + b)*sinh(x)^4 + 4*(5*(a + b)*cosh(x)^3 + 3*(a + b)*cosh(x))*sinh(x)^3 + 3*(a + b)*cosh(x)^
2 + 3*(5*(a + b)*cosh(x)^4 + 6*(a + b)*cosh(x)^2 + a + b)*sinh(x)^2 + 6*((a + b)*cosh(x)^5 + 2*(a + b)*cosh(x)
^3 + (a + b)*cosh(x))*sinh(x) + a + b)*sqrt(a + b)*log(((a^3 + a^2*b)*cosh(x)^8 + 8*(a^3 + a^2*b)*cosh(x)*sinh
(x)^7 + (a^3 + a^2*b)*sinh(x)^8 + 2*(2*a^3 + a^2*b)*cosh(x)^6 + 2*(2*a^3 + a^2*b + 14*(a^3 + a^2*b)*cosh(x)^2)
*sinh(x)^6 + 4*(14*(a^3 + a^2*b)*cosh(x)^3 + 3*(2*a^3 + a^2*b)*cosh(x))*sinh(x)^5 + (6*a^3 + 4*a^2*b - a*b^2 +
 b^3)*cosh(x)^4 + (70*(a^3 + a^2*b)*cosh(x)^4 + 6*a^3 + 4*a^2*b - a*b^2 + b^3 + 30*(2*a^3 + a^2*b)*cosh(x)^2)*
sinh(x)^4 + 4*(14*(a^3 + a^2*b)*cosh(x)^5 + 10*(2*a^3 + a^2*b)*cosh(x)^3 + (6*a^3 + 4*a^2*b - a*b^2 + b^3)*cos
h(x))*sinh(x)^3 + a^3 + 3*a^2*b + 3*a*b^2 + b^3 + 2*(2*a^3 + 3*a^2*b - b^3)*cosh(x)^2 + 2*(14*(a^3 + a^2*b)*co
sh(x)^6 + 15*(2*a^3 + a^2*b)*cosh(x)^4 + 2*a^3 + 3*a^2*b - b^3 + 3*(6*a^3 + 4*a^2*b - a*b^2 + b^3)*cosh(x)^2)*
sinh(x)^2 + sqrt(2)*(a^2*cosh(x)^6 + 6*a^2*cosh(x)*sinh(x)^5 + a^2*sinh(x)^6 + 3*a^2*cosh(x)^4 + 3*(5*a^2*cosh
(x)^2 + a^2)*sinh(x)^4 + 4*(5*a^2*cosh(x)^3 + 3*a^2*cosh(x))*sinh(x)^3 + (3*a^2 + 2*a*b - b^2)*cosh(x)^2 + (15
*a^2*cosh(x)^4 + 18*a^2*cosh(x)^2 + 3*a^2 + 2*a*b - b^2)*sinh(x)^2 + a^2 + 2*a*b + b^2 + 2*(3*a^2*cosh(x)^5 +
6*a^2*cosh(x)^3 + (3*a^2 + 2*a*b - b^2)*cosh(x))*sinh(x))*sqrt(a + b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x
)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)) + 4*(2*(a^3 + a^2*b)*cosh(x)^7 + 3*(2*a^3 + a^2*b)*c
osh(x)^5 + (6*a^3 + 4*a^2*b - a*b^2 + b^3)*cosh(x)^3 + (2*a^3 + 3*a^2*b - b^3)*cosh(x))*sinh(x))/(cosh(x)^6 +
6*cosh(x)^5*sinh(x) + 15*cosh(x)^4*sinh(x)^2 + 20*cosh(x)^3*sinh(x)^3 + 15*cosh(x)^2*sinh(x)^4 + 6*cosh(x)*sin
h(x)^5 + sinh(x)^6)) + 3*((a + b)*cosh(x)^6 + 6*(a + b)*cosh(x)*sinh(x)^5 + (a + b)*sinh(x)^6 + 3*(a + b)*cosh
(x)^4 + 3*(5*(a + b)*cosh(x)^2 + a + b)*sinh(x)^4 + 4*(5*(a + b)*cosh(x)^3 + 3*(a + b)*cosh(x))*sinh(x)^3 + 3*
(a + b)*cosh(x)^2 + 3*(5*(a + b)*cosh(x)^4 + 6*(a + b)*cosh(x)^2 + a + b)*sinh(x)^2 + 6*((a + b)*cosh(x)^5 + 2
*(a + b)*cosh(x)^3 + (a + b)*cosh(x))*sinh(x) + a + b)*sqrt(a + b)*log(-((a + b)*cosh(x)^4 + 4*(a + b)*cosh(x)
*sinh(x)^3 + (a + b)*sinh(x)^4 - 2*b*cosh(x)^2 + 2*(3*(a + b)*cosh(x)^2 - b)*sinh(x)^2 + sqrt(2)*(cosh(x)^2 +
2*cosh(x)*sinh(x) + sinh(x)^2 - 1)*sqrt(a + b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2
 - 2*cosh(x)*sinh(x) + sinh(x)^2)) + 4*((a + b)*cosh(x)^3 - b*cosh(x))*sinh(x) + a + b)/(cosh(x)^2 + 2*cosh(x)
*sinh(x) + sinh(x)^2)) - 16*sqrt(2)*((a + b)*cosh(x)^4 + 4*(a + b)*cosh(x)*sinh(x)^3 + (a + b)*sinh(x)^4 + (2*
a + b)*cosh(x)^2 + (6*(a + b)*cosh(x)^2 + 2*a + b)*sinh(x)^2 + 2*(2*(a + b)*cosh(x)^3 + (2*a + b)*cosh(x))*sin
h(x) + a + b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)
))/(cosh(x)^6 + 6*cosh(x)*sinh(x)^5 + sinh(x)^6 + 3*(5*cosh(x)^2 + 1)*sinh(x)^4 + 3*cosh(x)^4 + 4*(5*cosh(x)^3
 + 3*cosh(x))*sinh(x)^3 + 3*(5*cosh(x)^4 + 6*cosh(x)^2 + 1)*sinh(x)^2 + 3*cosh(x)^2 + 6*(cosh(x)^5 + 2*cosh(x)
^3 + cosh(x))*sinh(x) + 1), -1/6*(3*((a + b)*cosh(x)^6 + 6*(a + b)*cosh(x)*sinh(x)^5 + (a + b)*sinh(x)^6 + 3*(
a + b)*cosh(x)^4 + 3*(5*(a + b)*cosh(x)^2 + a + b)*sinh(x)^4 + 4*(5*(a + b)*cosh(x)^3 + 3*(a + b)*cosh(x))*sin
h(x)^3 + 3*(a + b)*cosh(x)^2 + 3*(5*(a + b)*cosh(x)^4 + 6*(a + b)*cosh(x)^2 + a + b)*sinh(x)^2 + 6*((a + b)*co
sh(x)^5 + 2*(a + b)*cosh(x)^3 + (a + b)*cosh(x))*sinh(x) + a + b)*sqrt(-a - b)*arctan(sqrt(2)*(a*cosh(x)^2 + 2
*a*cosh(x)*sinh(x) + a*sinh(x)^2 + a + b)*sqrt(-a - b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(c
osh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))/((a^2 + a*b)*cosh(x)^4 + 4*(a^2 + a*b)*cosh(x)*sinh(x)^3 + (a^2 + a
*b)*sinh(x)^4 + (2*a^2 + a*b - b^2)*cosh(x)^2 + (6*(a^2 + a*b)*cosh(x)^2 + 2*a^2 + a*b - b^2)*sinh(x)^2 + a^2
+ 2*a*b + b^2 + 2*(2*(a^2 + a*b)*cosh(x)^3 + (2*a^2 + a*b - b^2)*cosh(x))*sinh(x))) + 3*((a + b)*cosh(x)^6 + 6
*(a + b)*cosh(x)*sinh(x)^5 + (a + b)*sinh(x)^6 + 3*(a + b)*cosh(x)^4 + 3*(5*(a + b)*cosh(x)^2 + a + b)*sinh(x)
^4 + 4*(5*(a + b)*cosh(x)^3 + 3*(a + b)*cosh(x))*sinh(x)^3 + 3*(a + b)*cosh(x)^2 + 3*(5*(a + b)*cosh(x)^4 + 6*
(a + b)*cosh(x)^2 + a + b)*sinh(x)^2 + 6*((a + b)*cosh(x)^5 + 2*(a + b)*cosh(x)^3 + (a + b)*cosh(x))*sinh(x) +
 a + b)*sqrt(-a - b)*arctan(sqrt(2)*(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 - 1)*sqrt(-a - b)*sqrt(((a + b)
*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))/((a + b)*cosh(x)^4 + 4*(a
 + b)*cosh(x)*sinh(x)^3 + (a + b)*sinh(x)^4 + 2*(a - b)*cosh(x)^2 + 2*(3*(a + b)*cosh(x)^2 + a - b)*sinh(x)^2
+ 4*((a + b)*cosh(x)^3 + (a - b)*cosh(x))*sinh(x) + a + b)) + 8*sqrt(2)*((a + b)*cosh(x)^4 + 4*(a + b)*cosh(x)
*sinh(x)^3 + (a + b)*sinh(x)^4 + (2*a + b)*cosh(x)^2 + (6*(a + b)*cosh(x)^2 + 2*a + b)*sinh(x)^2 + 2*(2*(a + b
)*cosh(x)^3 + (2*a + b)*cosh(x))*sinh(x) + a + ...

________________________________________________________________________________________

Sympy [B] Leaf count of result is larger than twice the leaf count of optimal. 128 vs. \(2 (54) = 108\).
time = 10.01, size = 128, normalized size = 2.03 \begin {gather*} - \frac {2 a \left (\frac {b \sqrt {a + b \tanh ^{2}{\left (x \right )}}}{2} + \frac {b \left (a + b\right ) \operatorname {atan}{\left (\frac {\sqrt {a + b \tanh ^{2}{\left (x \right )}}}{\sqrt {- a - b}} \right )}}{2 \sqrt {- a - b}}\right )}{b} - \frac {2 \left (\frac {b^{2} \sqrt {a + b \tanh ^{2}{\left (x \right )}}}{2} + \frac {b^{2} \left (a + b\right ) \operatorname {atan}{\left (\frac {\sqrt {a + b \tanh ^{2}{\left (x \right )}}}{\sqrt {- a - b}} \right )}}{2 \sqrt {- a - b}} + \frac {b \left (a + b \tanh ^{2}{\left (x \right )}\right )^{\frac {3}{2}}}{6}\right )}{b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)*(a+b*tanh(x)**2)**(3/2),x)

[Out]

-2*a*(b*sqrt(a + b*tanh(x)**2)/2 + b*(a + b)*atan(sqrt(a + b*tanh(x)**2)/sqrt(-a - b))/(2*sqrt(-a - b)))/b - 2
*(b**2*sqrt(a + b*tanh(x)**2)/2 + b**2*(a + b)*atan(sqrt(a + b*tanh(x)**2)/sqrt(-a - b))/(2*sqrt(-a - b)) + b*
(a + b*tanh(x)**2)**(3/2)/6)/b

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 662 vs. \(2 (51) = 102\).
time = 1.03, size = 662, normalized size = 10.51 \begin {gather*} \frac {1}{2} \, {\left (a + b\right )}^{\frac {3}{2}} \log \left ({\left | -\sqrt {a + b} e^{\left (2 \, x\right )} + \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b} + \sqrt {a + b} \right |}\right ) - \frac {1}{2} \, {\left (a + b\right )}^{\frac {3}{2}} \log \left ({\left | -\sqrt {a + b} e^{\left (2 \, x\right )} + \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b} - \sqrt {a + b} \right |}\right ) - \frac {{\left (a^{2} + 2 \, a b + b^{2}\right )} \log \left ({\left | -{\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )} {\left (a + b\right )} - \sqrt {a + b} {\left (a - b\right )} \right |}\right )}{2 \, \sqrt {a + b}} - \frac {8 \, {\left (3 \, {\left (a b + b^{2}\right )} {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )}^{5} + 3 \, {\left (3 \, a b + b^{2}\right )} {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )}^{4} \sqrt {a + b} + 2 \, {\left (3 \, a^{2} b - 6 \, a b^{2} - 5 \, b^{3}\right )} {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )}^{3} - 6 \, {\left (a^{2} b + 4 \, a b^{2} + 3 \, b^{3}\right )} {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )}^{2} \sqrt {a + b} - 3 \, {\left (3 \, a^{3} b + a^{2} b^{2} - 15 \, a b^{3} - 13 \, b^{4}\right )} {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )} - {\left (3 \, a^{3} b - 9 \, a^{2} b^{2} + 5 \, a b^{3} + 17 \, b^{4}\right )} \sqrt {a + b}\right )}}{3 \, {\left ({\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )}^{2} + 2 \, {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )} \sqrt {a + b} + a - 3 \, b\right )}^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)*(a+b*tanh(x)^2)^(3/2),x, algorithm="giac")

[Out]

1/2*(a + b)^(3/2)*log(abs(-sqrt(a + b)*e^(2*x) + sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a +
b) + sqrt(a + b))) - 1/2*(a + b)^(3/2)*log(abs(-sqrt(a + b)*e^(2*x) + sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x)
 - 2*b*e^(2*x) + a + b) - sqrt(a + b))) - 1/2*(a^2 + 2*a*b + b^2)*log(abs(-(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*
x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))*(a + b) - sqrt(a + b)*(a - b)))/sqrt(a + b) - 8/3*(3*(a*b
 + b^2)*(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))^5 + 3*(3*a*b +
 b^2)*(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))^4*sqrt(a + b) +
2*(3*a^2*b - 6*a*b^2 - 5*b^3)*(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) +
a + b))^3 - 6*(a^2*b + 4*a*b^2 + 3*b^3)*(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*
e^(2*x) + a + b))^2*sqrt(a + b) - 3*(3*a^3*b + a^2*b^2 - 15*a*b^3 - 13*b^4)*(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4
*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b)) - (3*a^3*b - 9*a^2*b^2 + 5*a*b^3 + 17*b^4)*sqrt(a + b))/
((sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))^2 + 2*(sqrt(a + b)*e^
(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))*sqrt(a + b) + a - 3*b)^3

________________________________________________________________________________________

Mupad [B]
time = 3.71, size = 64, normalized size = 1.02 \begin {gather*} \mathrm {atanh}\left (\frac {{\left (a+b\right )}^{3/2}\,\sqrt {b\,{\mathrm {tanh}\left (x\right )}^2+a}}{a^2+2\,a\,b+b^2}\right )\,{\left (a+b\right )}^{3/2}-\left (a+b\right )\,\sqrt {b\,{\mathrm {tanh}\left (x\right )}^2+a}-\frac {{\left (b\,{\mathrm {tanh}\left (x\right )}^2+a\right )}^{3/2}}{3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tanh(x)*(a + b*tanh(x)^2)^(3/2),x)

[Out]

atanh(((a + b)^(3/2)*(a + b*tanh(x)^2)^(1/2))/(2*a*b + a^2 + b^2))*(a + b)^(3/2) - (a + b)*(a + b*tanh(x)^2)^(
1/2) - (a + b*tanh(x)^2)^(3/2)/3

________________________________________________________________________________________